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Abstract
We derive a multipartite generalized Bell inequality which involves the entire
range of settings for each of the local observers. Especially, it is applied
to show non-local behavior of a six-qubit mixture of Greenberger–Horne–
Zeilinger correlations stronger than previous Bell inequalities. For certain
noise admixture to the correlations an explicit local realistic model exists in the
case of a standard Bell experiment. Bell experiments with many local settings
reveal the non-locality of the state. It turns out that the new inequality is more
stringent than many other Bell inequalities in the specific quantum state.

PACS numbers: 03.65.Ud, 03.67.Mn

1. Introduction

Non-locality in quantum physics means the possibility of distributing correlations that cannot
be due to previously shared randomness, without signaling [1, 2]. Certain quantum predictions
violate Bell inequalities [3], which form necessary conditions for local realistic models for the
results of suitable measurements. Thus, certain measurement outcome in quantum predictions
cannot admit local realistic theories.

In many cases one can build a local realistic model for the observed data. However, many
such models are artificial and can be disproved if some principles of physics are taken into
account. An example of such a principle is rotational invariance of the correlation function—
the fact that the value of the correlation function does not depend on the orientation of reference
frames. Taking this additional requirement into account rules out local realistic models even
in situations in which standard Bell inequalities allow for an explicit construction of such
models [4].

Here, we derive a generalized Bell inequality for N qubits which involves the entire
range of settings for each of the local measuring apparatuses. The inequality forms a
necessary condition for the existence of a local realistic model which predicts rotationally
invariant correlations. Although the inequality involves the entire range of settings it can
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be experimentally tested using three orthogonal local measurement settings. This is a direct
consequence of the assumed form of rotationally invariant correlations.

Next, we consider a mixture of Greenberger–Horne–Zeilinger (GHZ) states [5] written in
three orthogonal directions. A white noise is added to the mixture with some probability. We
take the minimal amount of noise admixture for which one does not violate a Bell inequality
as a measure of the strength of the inequality. It turns out that the new inequality is more
stringent than many other inequalities [4, 6–8] in the specific quantum state.

2. Multipartite omnidirectional generalized Bell inequality

Consider N spin- 1
2 particles, each in a separate laboratory. Let us parameterize the local

settings of the j th observer with a unit vector �nj with j = 1, . . . , N . One can introduce the
‘Bell’ correlation function, which is the average of the product of the local results

E(�n1, �n2, . . . , �nN) = 〈r1(�n1)r2(�n2) · · · rN(�nN)〉avg, (1)

where rj (�nj ) is the local result, ±1, which is obtained if the measurement direction is set at
�nj . If the correlation function admits a rotationally invariant tensor structure familiar from
quantum mechanics, we can introduce the following form:

E(�n1, �n2, . . . , �nN) = T̂ · (�n1 ⊗ �n2 ⊗ · · · ⊗ �nN), (2)

where ⊗ denotes the tensor product, · the scalar product in R3N and T̂ is the correlation tensor
the elements of which are given by

Ti1...iN ≡ E
(�x(i1)

1 , �x(i2)
2 , . . . , �x(iN )

N

)
, (3)

where �x(ij )

j is a unit vector of the local coordinate system of the j th observer; ij = 1, 2, 3 gives
the full set of orthogonal vectors defining the local Cartesian coordinates. The components
of the correlation tensor are experimentally accessible by measuring the correlation function
at the directions given by the basis vectors in which the tensor is written1. Suppose one knows
the values of all 3N components of the correlation tensor, Ti1...iN . Then, with the help of
formula (2) one can compute the value of the correlation function for all other possible sets of
local settings.

We shall derive a necessary condition for the existence of a local realistic description of
the rotationally invariant correlation function (2). A correlation function has a local realistic
model if it can be written as

ELR(�n1, �n2, . . . , �nN) =
∫

dλ ρ(λ)I (1)(�n1, λ)I (2)(�n2, λ) · · · I (N)(�nN, λ), (4)

where λ denotes a set of hidden variables, ρ(λ) is their distribution, and I (j)(�nj , λ) is
the predetermined ‘hidden’ result of the measurement of all the dichotomic observables
parameterized by any direction of �nj .

One can write the observable (unit) vector �nj in a spherical coordinate system:

�nj (θj , φj ) = sin θj cos φj �x(1)
j + sin θj sin φj �x(2)

j + cos θj �x(3)
j , (5)

where �x(1)
j , �x(2)

j and �x(3)
j are the Cartesian axes relative to which spherical angles are measured.

We shall show that the scalar product of the local realistic correlation function, ELR given
in (4), with the rotationally invariant correlation function, E given in (2), is bounded by a

1 The same idea is behind quantum tomography.
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specific number dependent on T̂ . We use decomposition (5) and introduce the usual measure
d�j = sin θj dθj dφj for the system of the j th observer. It will be proven that

(ELR, E) =
∫

d�1 · · ·
∫

d�NELR(θ1, φ1, . . . , θN , φN)E(θ1, φ1, . . . , θN , φN) � (2π)NTmax,

(6)

where Tmax is the maximal possible value of the correlation tensor component, maximized
over choices of all possible local settings:

Tmax = max
θ1,φ1,...,θN ,φN

E(θ1, φ1, . . . , θN , φN). (7)

A necessary condition for the existence of a local realistic description of the rotationally
invariant correlation function, i.e., for ELR to be equal to E, is that the following scalar products
are equal: (ELR, E) = (E,E). If one finds (ELR, E) < (E,E), then the rotationally invariant
correlation function cannot be explained by any local realistic theory. Note that, due to the
integrations in (6), we are looking for a model for the entire range of settings.

In what follows, we derive the upper bound of (6). Since the local realistic model is an
average over λ, it is enough to find the upper bound of the following expression:∫

d�1 · · ·
∫

d�NI (1)(θ1, φ1) · · · I (N)(θN , φN)
∑

i1,i2,...,iN =1,2,3

Ti1i2...iN c
i1
1 c

i2
2 · · · ciN

N , (8)

where

�cj = (
c1
j , c

2
j , c

3
j

) = (sin θj cos φj , sin θj sin φj , cos θj ), (9)

and

Ti1i2...iN = T̂ · (�x(i1)
1 ⊗ �x(i2)

2 ⊗ · · · ⊗ �x(iN )
N

)
, (10)

compare with equations (2) and (3). Here, we use the abbreviation I (j)(θj , φj ) for
I (j)(�nj (θj , φj ), λ).

Let us analyze the structure of expression (8). Note that (8) is a
sum, with coefficients given by Ti1i2...iN , of products of the following integrals:∫

d�jI
(j)(θj , φj ) sin θj cos φj ,

∫
d�jI

(j)(θj , φj ) sin θj sin φj , and
∫

d�jI
(j)(θj , φj ) cos θj .

These integrals are scalar products of I (j)(θj , φj ) with three orthogonal functions.

One has
∫

d�jc
ik
j c

i ′k
j = (4π/3)δik,i

′
k
. The normalized functions

√
3/4π sin θj cos φj ,√

3/4π sin θj sin φj and
√

3/4π cos θj form a basis of a three-dimensional real functional
space, which we shall call S(3) [9]. Using these three functions one can write the projection
of function I (j)(θj , φj ) onto them as∫

d�jI
(j)(θj , φj )

√
3/4π sin θj cos φj = sin βj cos γj‖I (j)‖‖,∫

d�jI
(j)(θj , φj )

√
3/4π sin θj sin φj = sin βj sin γj‖I (j)‖‖, (11)∫

d�jI
(j)(θj , φj )

√
3/4π cos θj = cos βj‖I (j)‖‖,

where ‖I (j)‖‖ is the length of the projection, and βj and γj are some angles. Going back to
expression (8) one has(

4π

3

)N/2 N∏
j=1

‖I (j)‖‖
∑

i1,i2,...,iN =1,2,3

Ti1i2...iN e
i1
1 e

i2
2 · · · eiN

N , (12)
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with a normalized vector(
e1
j , e

2
j , e

3
j

) = (sin βj cos γj , sin βj sin γj , cos βj ). (13)

Note that the sum in (12) over the components of this vector is just T̂ · (�e1 ⊗ �e2 ⊗ · · · ⊗ �eN),
i.e., it is a component of the tensor T̂ in the local Cartesian coordinate systems specified by the
vectors �ej . If one knows all the values of Ti1i2...iN , one can always find the maximal possible
value of such a component, and it is equal to Tmax, of equation (7). Thus,∑

i1,i2,...,iN =1,2,3

Ti1i2...iN e
i1
1 e

i2
2 · · · eiN

N � Tmax. (14)

It remains to show the upper bound on the norm ‖I (j)‖‖. From the definition the norm
is given by a maximal possible value of the scalar product between I (j)(θj , φj ) and any
normalized function belonging to S(3):

‖I (j)‖‖ = max
| �d|=1

[√
3

4π

∫
d�jI

(j)(θj , φj )

3∑
k=1

dkc
k
j

]
, (15)

where �d = (d1, d2, d3) and | �d| = ∑3
k=1 d2

k = 1. Since |I (j)(θj , φj )| = 1, one has for the
integral of the modulus

‖I (j)‖‖ � max
| �d|=1

[√
3

4π

∫
d�j | �d · �cj |

]
, (16)

where the dot between three-dimensional vectors denotes the usual scalar product in R3. The
values of this scalar product are then integrated (summed) over all values of θj and φj , i.e.,
over vectors �cj on the whole sphere. Since the measure is rotationally invariant the integral
does not depend on particular �d and we choose it as a unit vector in the direction �z. For this
choice

‖I (j)‖‖ �
∫

d�j

∣∣∣∣∣
√

3

4π
cos θj

∣∣∣∣∣ = 2π

√
3

4π
. (17)

Finally (ELR, E) � (2π)NTmax.
Relation (6) is a generalized N-qubit Bell inequality with the entire range of measurement

settings. Specific local hidden variable models, ELR, which rebuild rotationally invariant
correlations, E, satisfy it. However, there exist rotationally invariant correlations which
cannot be modeled in a local realistic way. Whenever the scalar product (E,E) is bigger than
the product (ELR, E) there can be no local realistic model for E. Thus, we compute

(E,E) =
∫

d�1 · · ·
∫

d�N


 3∑

i1,...,iN=1

Ti1...iN c
i1
1 · · · ciN

N




2

= (4π/3)N
3∑

i1,...,iN =1

T 2
i1...iN

, (18)

where we have used the orthogonality relation
∫

d�jc
ik
j c

i ′k
j = (4π/3)δik,i

′
k
. Finally, the

necessary condition for the existence of a local realistic model of rotationally invariant
correlations which involve the entire range of settings reads

max
∑

i1,i2,...,iN =1,2,3

T 2
i1i2...iN

�
(

3

2

)N

Tmax, (19)

where the maximization is taken over all independent rotations of local coordinate systems
(or equivalently over all possible measurement directions).
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3. Mixture of six-qubit GHZ state

Now, we shall present the specific quantum state for which the newly derived inequality is
better than the previous inequalities described in [4, 6–8].

Consider the following six-qubit GHZ state

|ψ3〉 = 1√
2
(|z+〉1 . . . |z+〉5|z−〉6 + |z−〉1 . . . |z−〉5|z+〉6), (20)

where |z±〉j is the eigenstate of the local σz operator of the j th observer. Note that the states
of the last party are flipped with respect to the states of the other parties. We rotate the states
of all individual qubits by the angle α = 2π/3 around the axis �m = 1√

3
(1, 1, 1) on the Bloch

sphere. This rotation cyclically permutes the directions of the Cartesian coordinate system.
The unitary realizing this rotation is given by [10]:

U = e−i α
2 �m·�σ = 1

2

(
1 − i −1 − i
1 − i 1 + i

)
, (21)

with �σ = (σx, σy, σz) being a vector of local Pauli operators. Applying U to all the qubits
gives a new state |ψ1〉 ≡ U⊗6|ψ3〉. With the double application one gets |ψ2〉 ≡ U⊗6|ψ1〉.
The states |ψ1〉 and |ψ2〉 are, up to a global phase which does not contribute to correlations, of
the same form as |ψ3〉, but are written in the local bases of σx and σy operators, respectively.
Finally, one introduces a mixture of Greenberger–Horne–Zeilinger correlations and white
noise:

ρ = f

3

3∑
k=1

|ψk〉〈ψk| + (1 − f )ρnoise. (22)

We are interested in six-qubit correlations of this state. The correlation tensor has 3 · ((6
2

)
+(6

4

))
+ 3 = 93 nonvanishing six-qubit components. These are

(6
2

)
+

(6
4

)
components with two

equal indices different than the remaining four equal indices, e.g., T111122, T121121, T112222, . . .

There are three such sets which correspond to the three possible different pairs of indices, i.e.,
{1, 2}, {1, 3} and {2, 3} (e.g., T111122, T113311, T223333, . . .). In the remaining three components
all indices are the same. The value of every component is given by ±f/3. Thus, the maximal
possible component of the correlation tensor is equal to Tmax = f/3.

For certain noise admixture the mixed state (22) admits a local realistic model for
correlations obtained in a Bell experiment with any two local settings. The sufficient condition
for the existence of such a model is that the components of the correlation tensor, maximized
over the choice of all local coordinate systems, satisfy [8]

max
2∑

i1,...,i6=1

T 2
i1...i6

� 1. (23)

The state has 32 components which contribute to this sum. Thus, the left-hand side equals
32
9 f 2 and the condition is satisfied for f � 3

4
√

2
= 0.53033.

However, one can still observe non-local behavior of the state if measurements of more
local settings are allowed even though one adds more noise to the state. First consider
a Bell experiment in which all settings from arbitrary chosen local planes are measured.
A similar technique to the one described here (with less general integrations) leads to the
necessary condition for local realistic models which are rotationally invariant with respect to
the measured correlations [4]:

max
2∑

i1,...,i6=1

T 2
i1...i6

�
(

4

π

)6

Tmax, (24)
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where now the maximization is taken over all possible positions of local measurement planes,
and Tmax is computed in the plane for which the left-hand side is maximal. For the state under
consideration the left-hand side of this condition is the same as the left-hand side of (23), and
one directly finds that the necessary condition (24) is violated for f > 0.399422. For lower
values of f it could be that the specific local realistic model, proven to exist before, can be
extended to measurements within the plane.

Nevertheless, the new inequality increases the range of f for which the extension is
impossible. This is due to the fact that the settings over the whole Bloch sphere are allowed.
For the considered state the left-hand side of condition (19) is the sum of 93 terms, and thus
equals 93

9 f 2, which gives violation of this condition whenever f > 0.36744.

4. Summary

In summary, we derived a generalized N-particle Bell inequality which involves the entire
range of settings for each of the local measuring apparatuses. The new inequality better
reveals the impossibility of a local realistic model for correlations in a specific quantum
state, i.e., a mixture of Greenberger–Horne–Zeilinger states than many previous inequalities.
We illustrate this by the six-qubit state. In this case, for a certain noise admixture, one
can explicitly build a local realistic model for the correlations obtained in a standard Bell
experiment—the experiment with two local settings—independently of the plane which is
spanned by the settings. The inequalities which take into account the entire range of settings
in local planes disprove the possibility of the model for a substantially bigger range of noise
admixture. This range can be further enlarged using inequalities which involve correlations
between observables from the whole Bloch sphere.

It is very interesting to consider the following. Could there be more examples such that
this Bell inequality is more stringent? Could this Bell inequality distinguish between different
classes of multipartite quantum states? What about degree of entanglement for these specific
quantum states?
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